Séverine Urdy

Background

Influenza vaccine effectiveness depends on:

- antigenic drift
- immunogenicity
- immunosenescence
- prior immunizations
- time elapsed between vaccination and viral exposure

Knowledge-based modeling and in silico

clinical trials help assess the role and importance of these different factors.

Seasonal simulations in 65+

Effectiveness of High-Dose (HD) versus Standard Dose (SD) in 65+

Conclusions

The **HD vaccine consistently performs better** than the SD vaccine, in all simulated seasons, against both subtypes, supporting the use of the HD in the **older population**.

Predicting how antigenic drift affects influenza vaccine effectiveness*

Effectiveness of HD in 65 + Effectiveness of SD in 65 +

* quantified as the proportion of prevented symptomatic infections (PPE)

PREDICTION

DISCOVERY

Effectiveness of High Dose versus Standard Dose Influenza vaccines in older adults:

Insights from a multi-strain modeling approach

taking antigenic distance into account

Authors: Urdy, S.; Ratto, N.; Hanke, M.; Toledo, A. I.; Peyronnet, E.; Jacob, E.; Thommes, E.; Chaves, S.; Coudeville, L.; Boissel, J. P.; Bruezière, L. and Courcelles, E.

Methods

- 1. Knowledge-based mechanistic model
- 2. Calibration of vaccine immunogenicity
- 3. Calibration of A/H1N1 & A/H3N2 dynamics
- 4. Calibration of clinical responses to infection
- 5. Calibration of virtual population
 - a. Seroprotection rate
 - b. Vaccine effectiveness
 - c. Immunosenescence
- 6. In silico clinical trials for 10 seasons with exactly the same virtual population and perfectly matched control groups.

Multi-strain model of immunization by vaccination and infection

