BACKGROUND

Assumptions in modeling

* Knowledge gaps and assumptions are important aspects of mechanistic modeling. Assessing model enhance the model's credibility and the confidence in model outputs.

The spherical shape assumption in lung cancer

* The ISELA model (In Silico Epidermal growth factor receptor (EGFR)-mutant Lung
Adenocarcinoma) is a mechanistic model which Adenocarcinoma) is a mechanistic model which
predicts tumor progression in patients with predicts tumor progression in patients with [1].
* Here, we investigate a simplifying assumption made in the ISELA model and in other models [2][3], namely the assumption that tumors have a spherical shape.

METHODS

Analysis of two lung cancer datasets

* To evaluate the impact of tumor shape assumptions on the estimated tumor volume assumptions on the estimated tumor volume
with respect to real-world data, two lung cancer with respect
datasets [4][5] - here called LUAD and NSCLC datasets respectively - were analyzed to assess the sphericity of lung tumors.
* As individual longest tumor radii were available for each tumor (LUAD: $n=40$, NSCLC: $n=59$), the estimated spherical volume was computed under the spherical assumption (SA) and
compared to available clinically reconstructed tumor volume (CRV).
* The ellipsoid assumption (EA) was also explored as an alternative -less simplifying- shape as an alte.
* The shortest radius was only available in the LUAD dataset and was used to compute the dataset and was used to
* As the three tumor axes are rarely reported and were unavailable in these datasets, the three tumor axes under EA were defined with proportionality relationships to the longest
available radius (two assumptions on the caxis available radius (two assumptions on the c axis were explored, Fig. 2). The estimated elliptica and Fig. 3).

Exploring the impact of assuming spherical tumors on the modeled clinical outcome through the analysis of tumor measurements and in silico simulations

* To quantify the impact of the SA on the model's primary output -time to progression (TTP)-, an
alternative ISELA model assuming ellipsoid tumors was implemented.
* Two clinical arms -one under the SA and the other under the EA- were simulated on the same virtual patients ($\mathrm{n}=5000$) with only the sphericity parameter differing, thus allowing a
patient per patient comparison (Fig. 4).
* The impact of the eccentricity (e) was assessed by simulating 3 arms with each a different value ($n=200$) (Fig. 5).

CONCLUSION

* The initial knowledge gap related to the form of the tumor, which led us to the SA, is assessed as having a low impact on TTP, thus increasing the general credibility of the model.
In fact, real-data analyses confirmed that the tumor volume is overestimated under the SA but
in silico comparisons of the SA and the EA in silico comparisons of the SA and the EA (TTP) is slightly impacted.
* Datasets are of crucial importance for modeling especially for hypothesis testing. The LUAD and NSCLC datasets allowed us to study the SA and to define a promising alternative, the EA which better predicts tumor volume (a secondary model output).
Additional studies are needed to further explore the EA and validate its use as support to clinica decision making.

ACKNOWLEDGMENTS

The authors would like to thank E. Peyronnet, N Ceres, A. Perrillat-Mercerot, E. Jacob and M. Coudron who helped develop the model at nova and Janssen-Cilag France for the support to the project.

Poster

857

REFERENCES

1. Jacob, et al. biopxiv 2022.

Thominson, et oll. British journal of concer 1955 . . .

